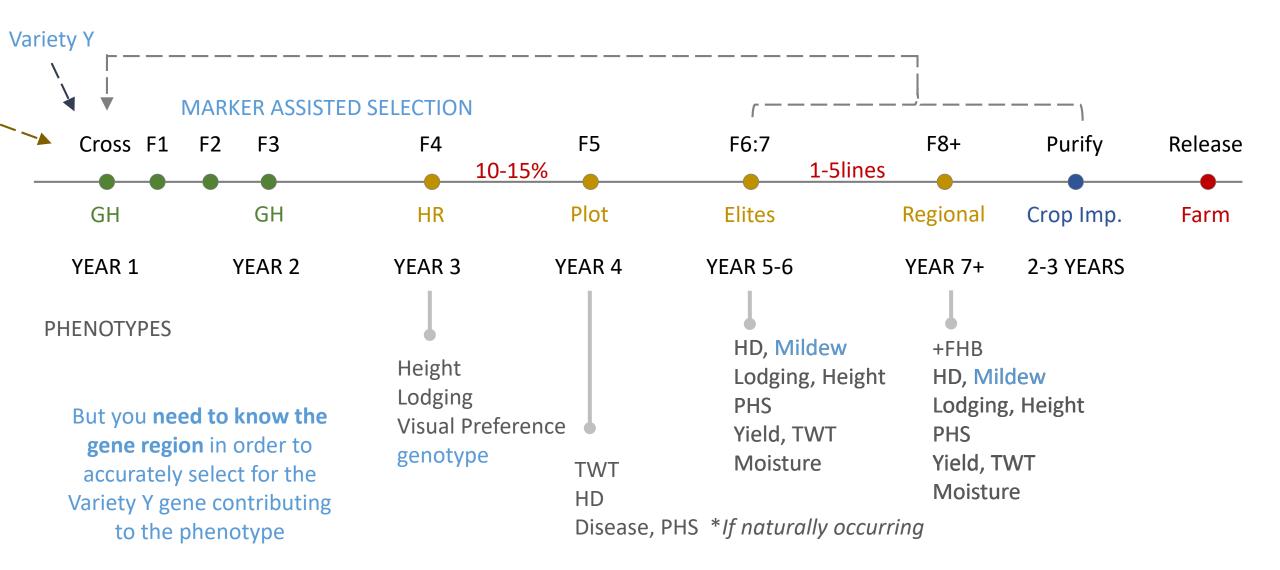

Fine mapping and cloning genes Ellie Taagen & Shantel A Martinez October 24, 2019

From phenotype and genotype associations


To identificaiton of a trait's causal variant sequence

Background and Basics Practical Example Conceptual Activity Challenges and Solutions Fine mapping and cloning is a method for identifying causal genetic variants driving phenotypic variants

> This allows for precise selection for desirable traits in the breeding germplasm

Application: An example of traditional wheat breeding in Northeast

Definitions of key concepts

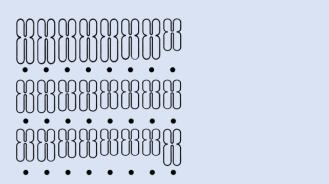
Genetic linkage analysis

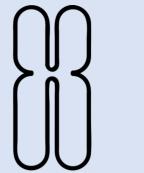
Use statistical probability to test whether a phenotype is associated with a genetic marker by chance or because the phenotype's causal variant and the genetic marker are closely located in the same genomic segment

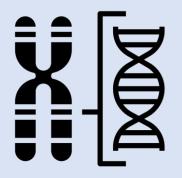
- The phenotype is something you can measure: disease susceptibility, grain weight, gene expression, etc.
- The resolution of the linkage analysis is limited by the distribution of the genetic markers and position of genetic recombination events

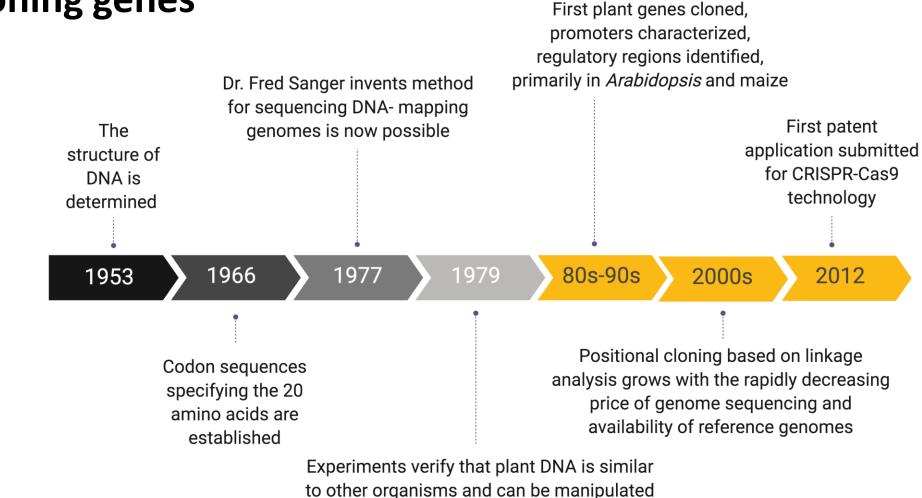
Correlation	*****	
	A R R R	Causation

Positional cloning


Based on the *physical position* of genetic sequence on chromosome, identify the gene and characterize the causal variant base pair(s) responsible for the phenotype

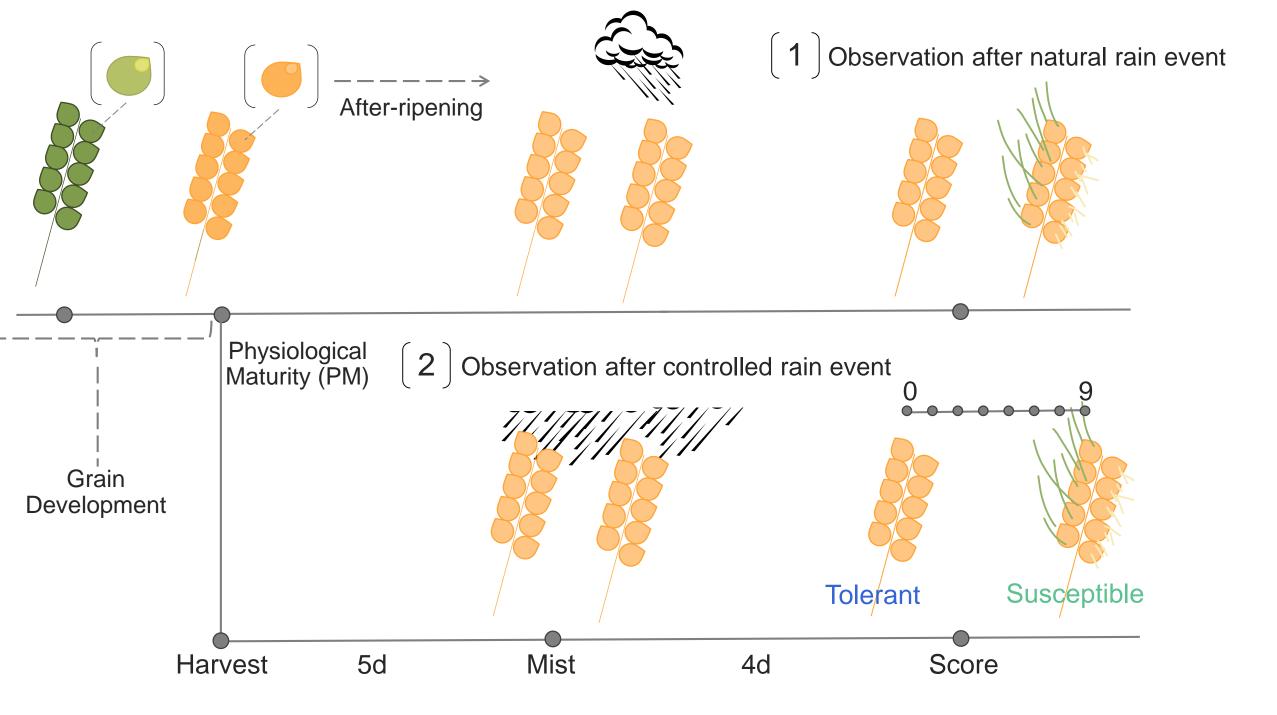

- Create a perfect marker for screening breeder's germplasm
- Vector based cloning system
 - DNA targeting tools such as the CRISPR-Cas9 system can facilitate more rapid introgression

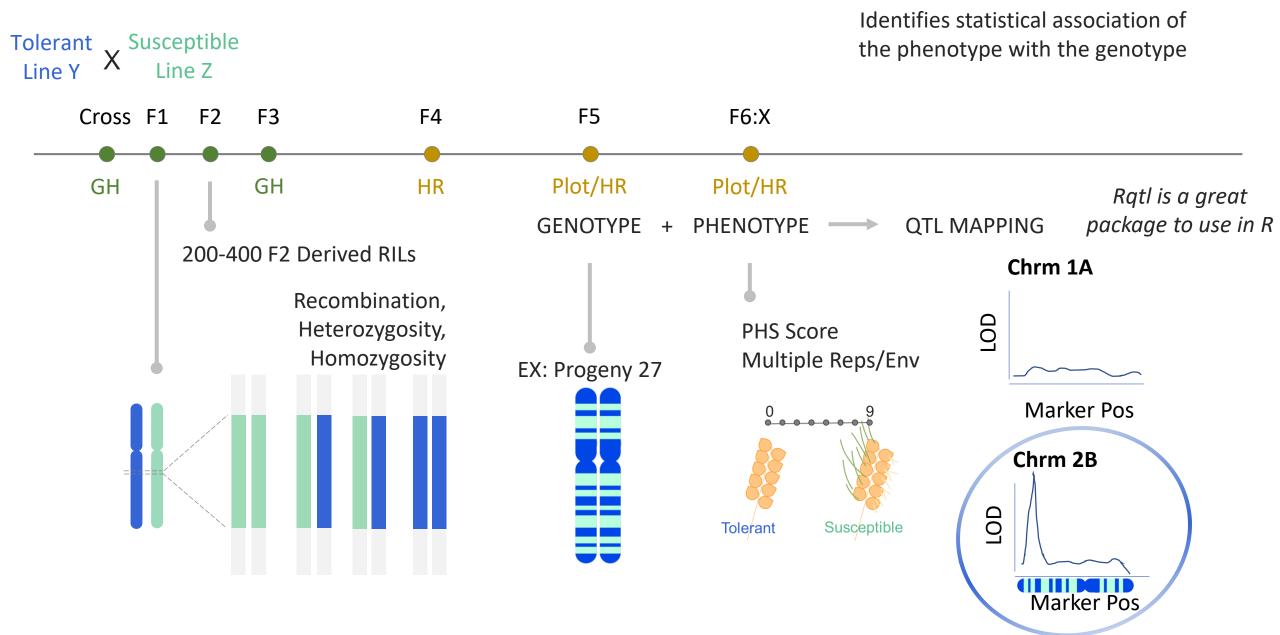

The logic of mapping a gene



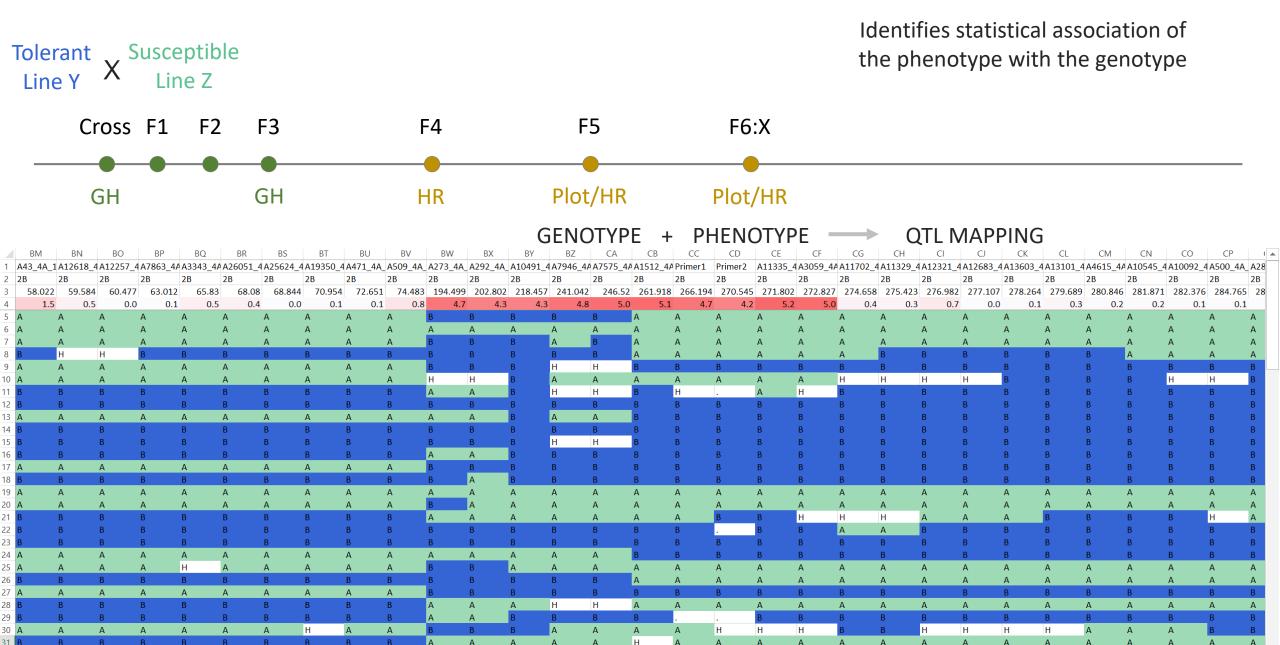
A brief history of mapping and cloning genes

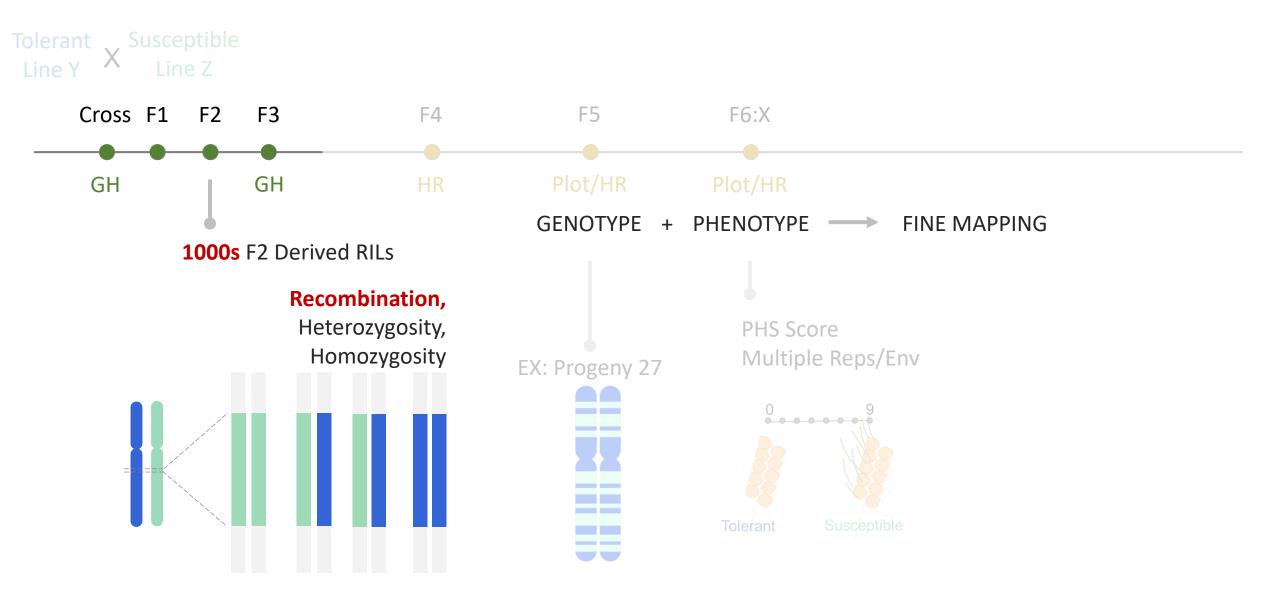

using the same enzymes, cells and vector systems tested in other eukaryotes


Sources & recommended reading <u>Goldberg</u>, <u>Plant Physiology</u>, 2001 <u>The Gene</u>, <u>Siddhartha Mukherjee</u>


Background and Basics Practical Example

Conceptual Activity Challenges and Solutions




QTL mapping a PHS tolerance gene

QTL mapping a PHS tolerance gene

Fine mapping the 2B QTL

Why does the mapping population **size** matter?

- There are only 1-3 crossovers per chromosome per meiosis
 - The chance that a crossover happens somewhere informative for fine mapping the QTL decreases as we zoom-in!

OTL ->

• A larger population can better measure the variability of the phenotype

Not a useful crossover for finemapping the QTL

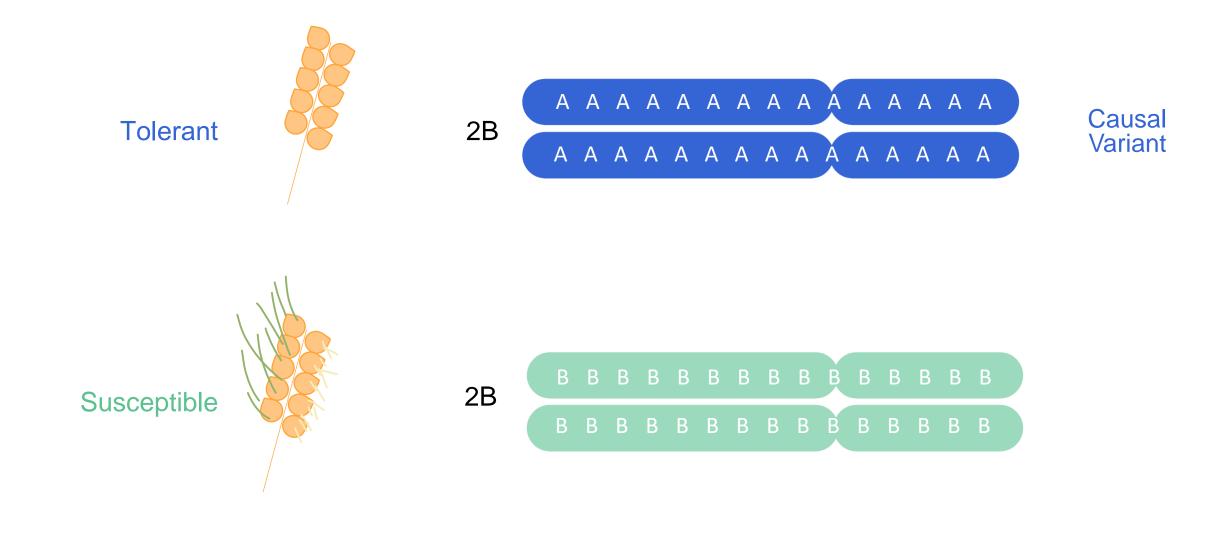
Why does the mapping population **structure** matter?

• Biparental (generally)

Select for heterozygosity → CO provide finer resolution of the QTL → heterogeneous inbred families (HIFs)

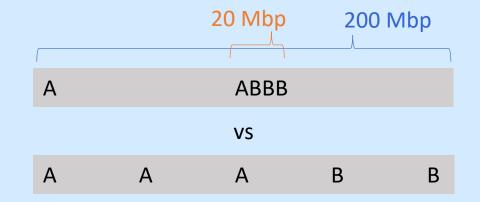
Background and Basics Practical Example Conceptual Activity Challenges and Solutions

Step 1: which varieties are PHS tolerant/susceptible?


PHS Tolerant

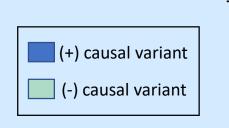
→ PHS Susceptible

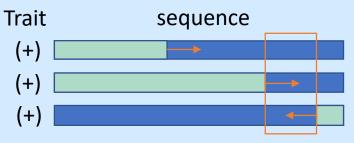
[HANDOUT 1: VARIETIES]


Step 1: which varieties are PHS tolerant/susceptible?

[HANDOUT 1: VARIETIES]

Genetic resolution can be a limiting factor


• Distribution of genetic markers (ie. SNP)



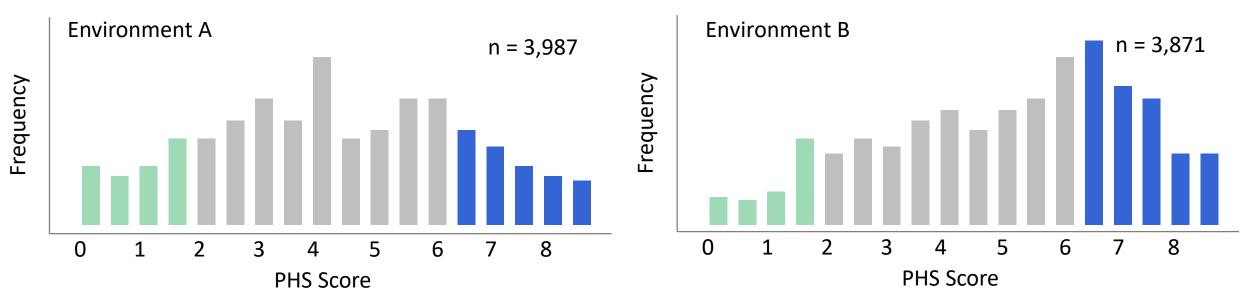
• Polymorphism

• Crossovers

Step 2: order the lines into groups based on genotypes

100 Mbp	200 Mbp	300 Mbp	400 Mbp	500 Mbp	600 Mbp	700 Mbp
SNP						
В	В	В	В	А	А	Α

Do lines have similar recombination events?


Recombination event (crossover event)

Can the recombination events be ordered along the chromosome?

We suspect AAA lines to be tolerant and the BBB lines to susceptible but we don't know yet the about the recombinants

[HANDOUT 2: GENO]

Step 3: combine geno/pheno data

The handout is only looking at a small subset of these 4,000 progeny

Write the phenotype per line on the ordered genotypes strips

Step 3: combine geno/pheno data

ΑΝΰο	•	-	~	Jx A																											~
A	в	LA I	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BP	BQ	BR	BS	BT	BU	BW B	Y B
1	5		8 150,709,720																		184,512,531		269,375,959							BC1F8 BC1	
2		2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	28	2B	2B	2B	2B		2B	2B	2B								
3 Source En		snp1763	tarc2079	tarc2082	AX-94884418	tarc2090	AX-95022624	AX-94750768	AX-95018481	AX-94633037	AX-94549797	ss26.3/Cnl414	tarc2074	WMC474	AX-94487047	GBS-178.7	GBS-180.5	GBS-181.6	GBS-184.36	GBS-184.4 (GBS-184.5	AX-94451130	AX-94668928		Sny09	McG10				Sny18 Cal	19
	1F5-181(HR)	В	В	В	В	В	B	В	В	В	В	В	В	B	В	В	В	В	B	A	В	A	A	3.6	2.5	4.3				NA 3	-
	1F5-878(HR)	B	В	В	В	В	B	В	В	B	В	B	В	A	В	A	A	A	A	A	A	В	В	2.4	4.6 3.0	3.7		NA		NA 6.	
	1F5-307(HR) 1F5-465(HR)	A	A	A	A	A	R	A	A	A	A	B	B	B	A	B	B	B	B	B	B	A	A	0.8	3.8	4.9		1.6 6.0		7.8 N/	
	1F5-405(HR) 1F5-417(HR)	B	B	B	B	B	B	B	Δ	Δ	A	A	A	A	Δ	Δ	B	A	A	A	A	A .	Δ	2.8	3.8	5.7				9.0 7.	
	1F5-183(HR)	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	В	В	В	В	В	1.8	3.4	2.5		2.2		NA 1.	
	1F5-169(HR)	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	В	В	н	В	В	1.2	1.4	2.3	1.4	0.3		4.4 4.4	
	1F5-738(NR-cay)	A	А	А	А	А	А	А	А	А	А	•	А		А	А	А	А	В	А	А	А	А	2.6	0.8	2.3	1.8	4.4		4.0 2.0	
	1F5-306(HR)	В	В	В	В	В	В	В	В	В	В	A	В	Α	А	•	В	В	В	В	В	А	В	3.6	3.8	6.1		4.0		6.6 7.	
	1F5-105(HR)	A	А	А	А	А	А	А	А	A	A	A	В	В	В	А	А	А	A	А	A	В	В	2.2	4.6	5.7	5.0	4.4		3.6 N/	
	1F5-422(HR)	A	A	A	A	A	A	A	A	A	A	A	A	B	B	A	A	A	A	A	A	B	B	4.0	3.9	4.7	5.4	5.0		7.4 N/ 4.0 N/	
	1F5-320(HR) 1F5-135(HR)	Δ	B	B	B	B	В	в	В	В	В	A	B A	A	A B	A	A	-	A	A	A	B	В	4.0 3.0	2.7	4.5		6.5 0.6		4.0 N/	
	1F5-155(HR) 1F5-238(HR)	B	B	B	B	B	B	B	B	B	B	B	B	A	A	B	B	B	B	B	B	A	B	2.4	3.4	3.1		6.2		7.2 7.	
	1F5-703(HR)	A	A	A	A	A	A	A	A	A	A	A	A	A	A	В	В	B	В	B	в	A	A	3.6	4.4	NA		0.6		5.0 3.	
19 0157-4 BC	1F5-807(HR)	А	А	А	А	А	н	А	А	А	А	А	-	A	А	А	А	А	А	А	А	В	А	2.0	2.1	4.1	3.8	2.6		7.4 4.	
20 1527-4 BC	1F5-251(HR)	А	А	А	А	А	A	А	А	А	А	А	А	В	А	А	А	А	А	А	А	А	А	NA	3.5	4.9		6.0		NA 2.	
	1F5-325(HR)	A	А	А	А	А	A	А	А	А	А	В	А	В	А	А	А	А	А	А	А	А	А	2.8	2.3	4.3		3.9		4.8 2.	8
	1F5-331(HR)	B	В	В	В	В	В	В	A	A	A	В	A	В	A	A	A	А	A	A	A	A	А	3.8	3.2	5.7		5.4		5.8 5	5
	1F5-353(HR)	B	В	В	B	B	B	B	A	A	A	В	A	В	A	A	A	A	A	A	A	A	A	2.4	4.4	2.9		2.3		6.6 6 4.0 5	5
	1F5-174(NR-cal) 1F5-45(NR-cal)	B	A	A	A	A	A	A	A	A	A	A	A	B	A	A	A	A	A	A	A	A	A	4.6	4.8	4.9		3.6		6.4 4	
	1F5-790(HR)	A	A	A	A	A	A	A	A	Â	Â	B	Â	B	Â	Â	Â	Â	Â	A	Â	Â	B	5.0	5.4	67	6.6	3.8		NA 7.	
	1F5-809(NR-cal)	A	A	A	A	A	A	A	A	A	A		A	В	A	A	A	A	A	A	A	A	A	1.4	4.8	2.9	4.6	3.5		NA 2.	
	1F5-429(HR)	А	А	А	А	А	А	А	А	А	А	А	А	А	В	В	В	В	В	В	В	В	В	2.8	2.2	4.5	3.8	2.4	7.8	NA 6.	
	1F5-6(HR)	В	В	В	В	В	В	В	В	В	В	В	В	Α	В	В	В	В	В	В	В	В	А	2.0	3.2	6.5	5.4	6.0		5.8 6.	
	1F5-415(HR)	В	В	В	В	В	В	В	В	В	В	В	В	A	В	В	В	В	В	В	В	В	А	NA	2.6	2.3		2.9		7.2 2.	
	1F5-31(HR)	В	В	В	В	В	В	В	В	В	В	В	В	A	В	В	В	В	В	В	В	В	А	3.8	4.4	4.7		6.8		8.2 7.	
	1F5-209(HR) 1F5-182(HR)	В	В	В	В	В	B	В	В	В	В	AB	В	A	В	B	В	В	В	В	В	В	В	2.6	3.2 5.0	4.7 5.3		3.4 5.3		NA 8	
	1F5-182(HR) 1F5-933(HR)	B	B	B	B	B	B	B	B	B	B	A	B	A	B	B	B	B	B	B	B	B	A	1.0	1.4	3.0	2.8	3.8		NA 3.	
	1F5-499(HR)	B	B	B	B	B	B	B	B	B	B	Â	B	Â	B	В	B	B	B	-	B	B	B	1.6	2.8	4.1	2.8	2.2		5.4 3.	
	1F5-674(HR)	B	В	B	B	В	В	B	В	в	в	A	B	A	B	в	В	В	B	В	в	B	A	4.0	2.8	4.7	5.6	3.6		NA 8.4	
	1F5-189(HR)	В	В	В	В	В	В	В	В	В	В	А	В	А	В	В	В	В	В	В	В	В	В	2.2	4.2	4.5	4.6	3.0		NA 6.	2
54 0378-3 BC		В	В	В	В	В	В	В	В	В	В	В	В	A	А	А	А	А	А	А	А	А	А	1.4	2.4	4.5		0.4		5.6 6	
55 0378-2 BC		B	В	В	В	В	В	В	В	В	В	В	В	A	А	А	A	А	A	А	A	A	А	1.4	2.2	3.3		2.3		5.4 6	
56 1405-5 BC		B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	-	В	B	B	3.2	4.5 3.5	5.3		2.7		7.2 6.1 NA N	
57 0969-1 BC 58 0752-4 BC		B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	3.2 4.4	3.5	5.3		2.5		NA NA 8.	
59 0752-2 BC		B	B	B	B	B	B	B	B	B	B	8	B	B	B	B	B	B	B	B	B	B	B	0.6	4.4	5.9		3.3		6.2 N/	
	1F5-139(NR-cal)	B	B	В	В	B	B	B	B	В	B	-	B	В	В	B	B	B	В	B	B	B	B	4.4	6.2	5.7		1.8		NA 7.	
61 Cayuga Ca		A	А	А	A	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	A	А	1.6	0.2	3.7	2.6	3.4		2.2 2	2
62 Cayuga Ca	yuga	•	-	-	-	-	-	-	-	-	-	-		-		А	А	А	A	А	A		-	2.2	1.0	1.5		2.8	1.6	1.4 2.4	
63 Cayuga Ca		А	А	А	А	А	А	A	А	А	A	A	А	A	А	А	А	А	A	А	A	А	А	1.8	2.2	5.3		0.6		1.8 2.	
64 Cayuga Ca		A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	1.8	0.4	1.9		2.5		3.0 2	
65 Cayuga Ca	yuga	A A	A	A	A	A		A	A	A	A	A	A	A	A	A	A	A	A	A	-	A	A	2.6	2.0	3.3		0.2		0.8 3.	
66 Cayuga Ca 67 Caledo Ca		B	A	A	A	B	B	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	3.2	1.6	3.1		1.8		1.0 1 NA 7.0	
67 Caledo Ca 68 Caledo Ca		-	-	-	-	-	-	-	-	-	-	-	-	-		B	B	B	- B	B	B	-	-	4.8	5.4	4.9 5.3		4.2		6.0 9	
69 Caledo Ca		B	В	В	В	В	В	В	В	В	В	В	В	В	В	В	B	B	B	B	B	В	В	3.8	4.0	6.5		5.4		7.4 8.	8
70 Caledo Ca		B	В	В	B	В	В	B	В	В	В	В	B	B	B	В	В	В	B	B	в	B	в	5.2	6.8	7.1	5.4	3.8		8.2 9	,
71 Caledo Ca	ledonia	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	4.4	6.8	5.1	5.5	7.6		7.6 8.	
	1F5-627(NR-cay)		А	А	А	А	А	А	А	А	А	-	А	-	А	А	А	А	А	А	А	А	В	1.2	1.3	1.9				NA N/	
73 1887-2 BC	1F5-822(NR-cay)	А	А	А	А	А	А	А	В	В	В	-	В	-	В	В	В	В	В	В	В	В	В	1.6	1.3	3.9	2.8	2.5	1.6	3.4 N/	A

Step 4: examine the progeny's geno/pheno

- What phenotype pattern do you see in association with the genotypes? Which haplotype is always susceptible? Tolerant?
- Can you identify where there is a critical crossover event? Highlight the two flanking genetic markers.

Recombination event —

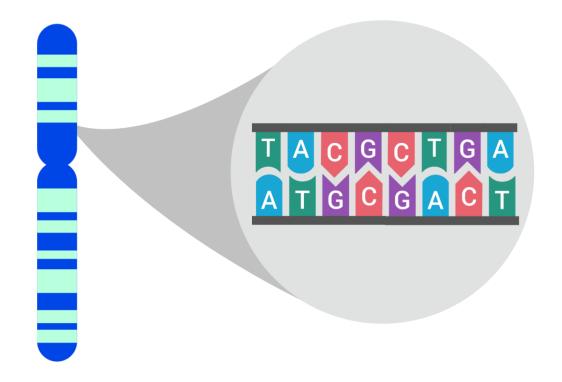
		100 Mbp	200 Mbp	300 Mbp	400 Mbp	↓500 Mbp	600 Mbp	700 Mbp
_	Phenotype	SNP	SNP	SNP	SNP	SNP	SNP	SNP
	6	В	В	В	В	А	А	А
Intil	1	А	Α	Α	A	Â	Â	В
Tolerant	2	А	А	А	А	А	А	В
г								
a 10014h	1	A	Α	Α	В	В	В	В
o 400Mb	2	A	А	А	В	В	В	В
_								
00-200Mb	8	В	А	А	A	А	А	А
type	2	В	A	А	A	А	А	А
г								
100	2	A	В	В	В	В	В	В
100- lerance	1	A	В	В	В	В	В	В
	7	A	В	В	В	В	В	В
		?						
		•						

Having Cayuga markers (A) up until 700Mb results in a Cayuga PHS Tolerant phenotype (1,2)

Same effect: up to 400Mb

Recombination event between 100-200M shows either a Tol or Susc phenotype

Suggesting that a gene between 100-200Mb is associated with PHS tolerance

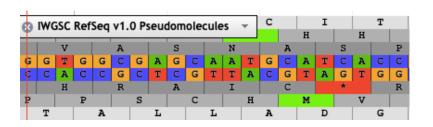

However, we currently do not have enough markers in that region to see which gene in the region provides tolerance

Step 4: examine the progeny's geno/pheno

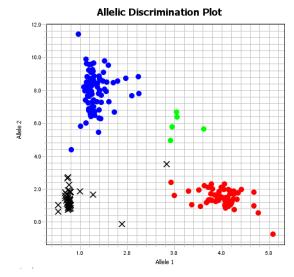
- What phenotype pattern do you see in association with the genotypes? Which haplotype is always susceptible? Tolerant?
- Can you identify where there is a critical crossover event? Highlight the two flanking genetic markers.
- You don't have the resources to phenotype everything so pick only the lines that have a crossover between to critical flanks or are heterozygous

Designing genetic markers

We want to zoom in on the sequence between the critical flanking positionsAKA identify positions where we can design genetic markers!


Useful genetic markers are both:

- Polymorphic for your parent lines
- Chromosome specific (and genome specific for polyploid species)


Designing genetic markers

• We put our resources into developing 10 new genetic markers between the critical flanking positions

Quick how-to for KASP markers:

After you ID a polymorphic & site specific SNP, ie. 90K, grab sequence surrounding SNP from reference genome Use tools like <u>Oligo-Calc</u> and <u>NIH Primer Blast</u> to optimize primer design

Test the markers- 3 primer fluorescent system detects alleles A, B and AB

Step 5: the mapping process is iterative

- We genotype the progeny of the plants we advanced with the 10 new markers and measure their PHS phenotype
- Look at your new results what phenotype pattern do you see in association with the genotypes? Which haplotype is always susceptible? Tolerant?
- Can you identify where there is a critical crossover event? Highlight the two flanking genetic markers.

[HANDOUT 4: GENO+PHENO]

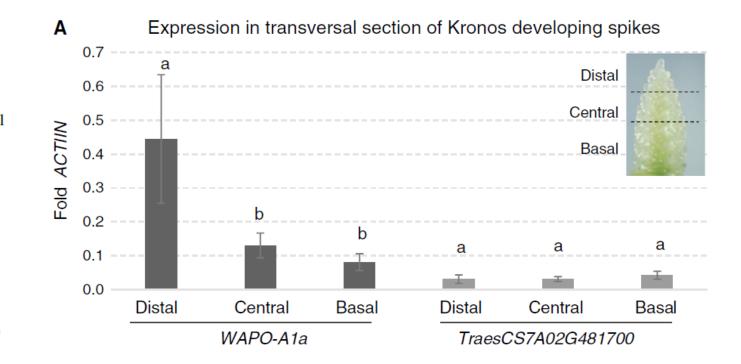
Step 6: prioritize list of genes

- A: Look at the **polymorphism between your parental lines** in the <u>EcoTILLING</u> browser. Prioritize genes that have truncation mutations or changes with negative BLOSUM 62 scores in conserved regions (THIS CAN MISS REGULATORY DIFFERENCES)
- B: Look within **expression databases** for the expression profile of the genes. <u>expVIP</u> <u>WheatExp</u> <u>Wheat eFP</u>

Prioritize genes that are expressed in your target tissue and developmental time

- C: Find the collinear and closest genes in Rice, Brachy, Barley, Maize.
 Find the closest gene in Arabidopsis. Record the names and numbers. If there are close paralogs, you may need to generate a phylogenetic tree to find the closest homologs.
 Do a literature search to learn about the function of this gene or gene family: Starting with barley->brachy->rice->maize and then Arabidopsis.
 Transcription factors are genes regulating protein stability are always good candidates Most of the QTLs cloned in wheat so far are in these categories
- D: Prepare a small **document** for each gene describing: Conserved domains, function, references, expression profile, polymorphisms between parental lines. Integrate that info into a Table and prioritize your list

Step 6: prioritize list of genes bit.ly/35UqEXP


[HANDOUT 5: GENE LIST]

Step 7: gene validation

Check for gene expression within your lines and tissue relevant to the trait

Theoretical and Applied Genetics (2019) 132:2689-2705

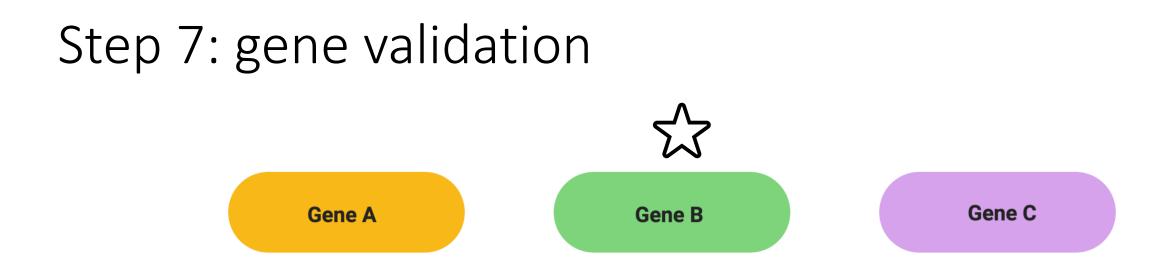
Fig. 4 Transcript levels in developing spikes at the floret primordia stage relative to ACTIN as endogenous control. a WAPO-A1 and TraesC-S7A02G481700 in basal, central and distal sections of Kronos developing spikes. The experiment was repeated twice, and data were analyzed together using experiment as block. Means within each gene were compared using Tukey tests (=0.05). Bars are SE of the means. b Transcript levels of WAPO-A1 in hexaploid near isogenic HIF lines homozygous for the WAPO-A1b and WAPO-

2701

Kuzay et al., 2019 (TAG)

Step 7: gene validation

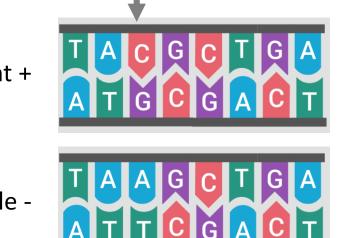
 You look at your research budget and there is only enough funding to pursue three genes for knockouts with CRISPR-Cas9



- Pick the plants you want to transform: which allele are we trying to knockout?
- What phenotype do you expect?

Step 7: gene validation

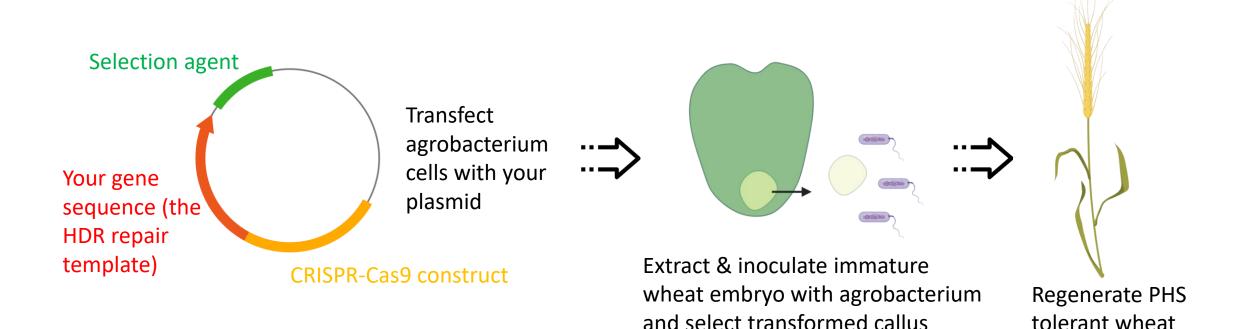
Phenotype	Treatment	Treatment	Treatment



Phenotype	Treatment	Treatment	Treatment
1	КО	WT	WT
7	WT	КО	WT
2	WT	WT	КО

Theor Appl Genet (2014) 127:855-866

- phenotype
- Identify the causal variant in the sequence (ie. is it a nucleotide shift in the promoter)


Tolerant +

Susceptible -

TaSdr-Bla GCCCTTCACTGGACGCCACTGGAATCCACAGTCCTCCCCCCAAAGCAGCGCGCCCCGC 60
$TaSdr-B1b \ \ GCCCTTCACTGGACGCCACTGGAATCCACAGTCCTCTCCCAAAGCAGCGCGCCCCGC \ \ 60$
Sdr-5 Forward primer
TaSdr-B1a GACTCGCCTCCGCCTACGTGTCGGCCCCCGCCCGCCCGCC
TaSdr-B1b GACTCGCCTCCGCCTACGTGTCGGCCCCGTCCCCGCCCGC
<i>PmI</i> recognition site
<i>TaSdr-B1a</i> TCGTTCC <u>CACGTO</u> CCCCTCCCCTCTGCGCGCATCCGATTGGCCGCCCACGCCTTCTTAAGC 180 <i>TaSdr-B1b</i> TCGTTCC <u>CACGTC</u> CCCCCCCCTCGCGCGCATCCGATTGGCCGCCCACGCCTTCTTAAGC 180
Tasar-BID Teeffeeteeteeteeteeteeteeteeteeteeteeteet
TaSdr-B1a CGGCACGGCACCGGGACCCAACGCCGTGCACTCCGTCCACCCCGTCAGCAGACTTCGAC 240
TaSdr-B1b CGGCACGGCACCGGGACCCAACGCCGTGCACTCCGTCCACCCCGTCAGCAGACTTCGAC 240
PmII recognition site initiation codon
TaSdr-B1a TCG <mark>CACGTG</mark> CACGCA <mark>ATG</mark> GCCATGGTGCAGCCGGCGGACATGGCCGTCAAGGCCAACGAG_300
TaSdr-B1b TCGCGCGTGCACGCA
TaSdr-B1a ATCCTCGCGCGGGTTCCGGCCCATCGCGCCCAAGCCCGCCC
TaSdr-B1b ATCCTCGCGCGGTTCCGGCCCATCGCGCCCAAGCCCGCCC
TaSdr-Bla GCGATCGACGGCGCCGCCGACCGCGTGCTCTGCCACCTGCAGAACAGGCCGTGCCGGGCA 420
TaSdr-B1b_GCGATCGACGGCGCCGCCGACCGCGTGCTCTGCCACCTGCAGAACAGGCCGTGCCGGGCA_420
TaSdr-B1a AGGAAGCGCGGGGCGCCCGAGCGCCGTGCCGGTGTCCGCGGCCGGC
TaSdr-B1b AGGAAGCGCGGGGCGCCCGAGCGCCGTGCCGGGGCGCCGCCGCCGCCGCCGCCAAGAGG 480
TaSdr-B1a AAGAGGGCGGCGTACCCGGTGCCGCTCCGGTGCGCGGCGGCGGCGGCGGCGACCGAC
TaSdr-B1b AAGAGGGCGGCGTACCCGGTGCCGCTCCGGTGCGCGGCGGCGGCGGCGACCGAC
TaSdr-B1a GTGTCCACCGCGACGAGGGCCTATGTGTCCGTGCCGGGCAGTGCATGCA
Tasdr-B1b <u>GTGTCCACCGCGACGAGGGCCTATGTGTCCGTGCCGGGCAGTGCATGCCGTTGCG</u> 600
TaSdr-Bla TCCCTCCCGCCGGCGACCGCGAGTACCGGCGGGAATCTGACGATGCTCTCGACGACCATG 660
TaSdr-B1b TCCCTCCCGCCGGCGACCGCGAGTACCGGCGGGAATCTGACGATGCTCTCGACGACCATG 660
TaSdr-B1a GTGGCGGGCGACGACGAAGAGAGGAGGAGGGGCGCGCCGGGGGG
TaSdr-B1b GTGGCGGGCGACGACGAAGAGGAGGAGGAGGGGCGCCCCGTGGAGCGCGACCTGCTGCGG 720
TaSdr-Bla AAGCTGCTGGAGCCCAAGGTGATCTCGCCGCGGGGGGATGCGCCCCGTAGGATCCACCATC 780
TaSdr-B1b AAGCTGCTGGAGCCCAAGGTGATCTCGCCGCGGGGCGATGCGCCCCGTAGGATCCACCATC 780
TaSdr-B1a CACGTCGAATCCATCGTCCCCGGCGCCGTCGACGCGACCAGCACCGCCGCCTCGAAGACG 840
TaSdr-B1b CACGTCGAATCCATCGTCCCCGGCGCCGTCGACGCGACCAGCACCGCCGCCTCGAAGACG 840
Sdr-5 Reverse primer
TaSdr-B1a GCGGAGGAGGTGGAGGCGGAGGTGGAGACCGACGCGCTCCCGGCGGTCGTCACGGACCTCG 900
TaSdr-B1b GCGGAGGAGGTGGAGGCGGAGGTGGAGACCGACGCGCCCCCGGCGGTCGTCACGGACTCG 900
TaSdr-Bla AGCAACCGCGTCCGGCTGGTGAACGACGCGTACAAGGAGATGGTGGGCGCGCCCGAGTGC 960
TaSdr-B1b AGCAACCGCGTCCGGCTGGTGAACGACGCGGTACAAGGAGATGGTGGGCGCGCCCGAGTGC 960
TaSdr-B1a CTGTGGCTCGGCGCGGTGGCCGCGTCGAGGAGGATCAGCGGGGAGGTGGCGCTGGTGGTG 1020
TaSdr-B1b CTGTGGCTCGGCGCGGGGGGGGGGGGGGGGGGGGGGGG

Step 9: is my gene sufficient to determine the phenotype?

• Create a HDR construct with your tolerant gene sequence and use agrobacterium to knock-in the trait into a PHS susceptible variety

Background and Basics Practical Example Conceptual Activity Challenges and Solutions

Challenges / Solutions

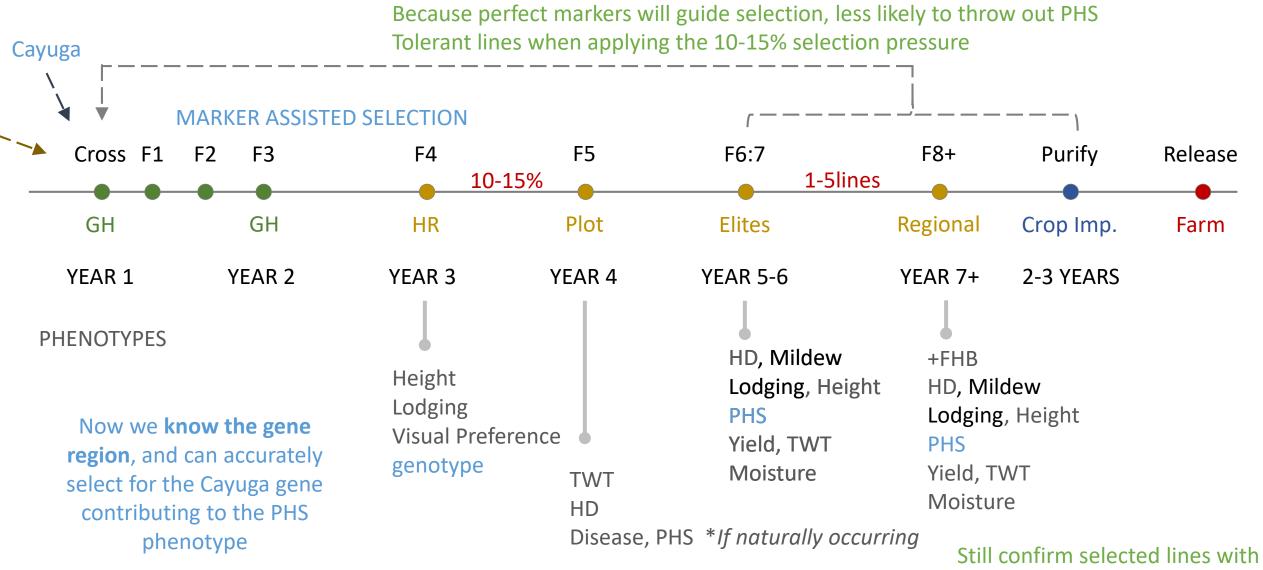
Polyploid and sequence specificity

Sequence region or use nulli-tetra lines

Reference genome unavailable

Use a related species or sequence region

Quantitative phenotype


Create a HIF, can try to refine phenotype resolution with controlled env.

Species doesn't have efficient transformation protocols

TILLING populations, or backcrossing

Critical CO still has many genes in region Plant large heterozygous progeny, or targeted recombination

Breeding after fine mapping & cloning

phenotyping in later generations

LinkedIn Email Slides/Resources

ella-taagen shantel-a-martinez

et395 sam594 shantel-martinez.github.io/talks

- Goldberg RB (2001) From Cot Curves to Genomics. How Gene Cloning Established New Concepts in Plant Biology. Plant Physiology 125:4–8. <u>https://doi.org/10.1104/pp.125.1.4</u>
- Kuzay S, Xu Y, Zhang J, et al (2019) Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor Appl Genet 132:2689–2705. <u>https://doi.org/10.1007/s00122-019-03382-5</u>
- McMaster GJ, Derera NF (1976) Methodology and sample preparation when screening for sprouting damage in cereals. Cereal Research Communications 4:251–254
- Mukherjee S (2016) The gene: an intimate history, First Scribner hardcover edition. Scribner, New York
- Ramírez-González RH, Borrill P, Lang D, et al (2018) The transcriptional landscape of polyploid wheat. Science 361:eaar6089. <u>https://doi.org/10.1126/science.aar6089</u>
- Zhang Y, Miao X, Xia X, He Z (2014) Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theor Appl Genet 127:855–866. <u>https://doi.org/10.1007/s00122-014-2262-6</u>

MAPPING/CLONING RESOURCES

Wheat genome sequence browser: URGI Blast <u>https://urgi.versailles.inra.fr/blast_iwgsc/blast.php</u> URGI JBrowse https://urgi.versailles.inra.fr/jbrowseiwgsc/gmod_jbrowse/?data=myData%2FIWGSC_RefSeg_v1.0

https://urgi.versailles.inra.fr/jbrowseiwgsc/gmod_jbrowse/?data=myData%2FIWGSC_RefSeq_v1.0&loc=chr1A%3A 59558565..534840209&tracks=HighConfidenceGenesv1.0&highlight=

Primer Design: Oligo-Calc <u>http://biotools.nubic.northwestern.edu/</u> NIH Primer Blast <u>https://www.ncbi.nlm.nih.gov/tools/primer-blast/</u> PolyMarker <u>http://polymarker.tgac.ac.uk</u>

SNP functional changes: EcoTILLING browser <u>https://dubcovskylab.ucdavis.edu/eco-tilling-blast</u>

Expression databases: expVIP <u>http://www.wheat-expression.com</u> WheatExp <u>https://wheat.pw.usda.gov/WheatExp/</u> Wheat eFP <u>http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi</u> Ensembl Plants https://plants.ensembl.org/index.html

Gene literature review: Google Scholar <u>https://scholar.google.com</u> PubMed <u>https://www.ncbi.nlm.nih.gov/pubmed/</u>

Design guide RNA: Cermak et al., 2017 The Plant Cell <u>http://www.plantcell.org/content/29/6/1196</u> Voytas Lab Plant Genome Engineering <u>http://cfans-pmorrell.oit.umn.edu/CRISPR_Multiplex/</u> Wheat CRISPR <u>https://crispr.bioinfo.nrc.ca/WheatCrispr/</u>

Sequence Alignment: ClustalOmega https://www.ebi.ac.uk/Tools/msa/clustalo/

HANDOUT RESOURCES

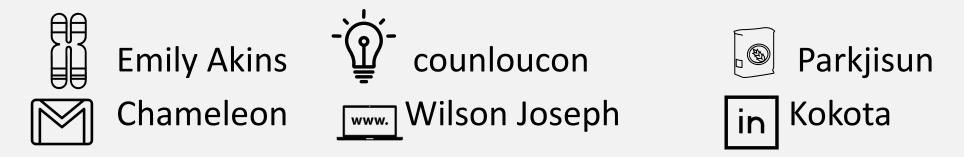
Google Sheet with handouts: <u>bit.ly/2JdxFIN</u>

PRINTING INSTRUCTIONS:

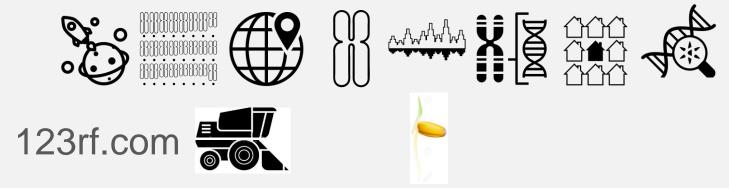
PartA: Print Handout 1 for n groups (there is enough room for multiple per page)

PartB: Print Handout 2+3 for n groups; Cut apart Handout 2 from 3

Cut Handout 2 in strips, one strip for each Line ID (only one will keep the header, that is okay) PartC: Print Handout 4 for n groups


Cut handout in half

PartD: Print Handout 5 for n groups


NOTE: be sure to print "fit to page". Some worksheets may be too long or wide by default.

NOUN PROJECT ATTRIBUTES

All graphics were created by the presenters in PowerPoint or BioRender, except for the following:

Ellie's slide icons artists: Maxim Kulikov, Rflor, Bismillah, Juan Pablo Bravo, Gregor Cresnar, Saifurrijal, Cornelia Scheitz

