Higher Seed Dormancy and ABA Sensitivity Improves Wheat Preharvest Sprouting Tolerance

Shantel A. Martinez, Keiko M. Tuttle, Yumiko Takebayashi, Mitsunori Seo, Kimberly Garland Campbell, and Camille M. Steber

> PAG 2016 Plant Dormancy Workshop

Preharvest Sprouting (PHS)

Germination of mature seed on the mother plant when cool and wet conditions occur before harvest

Wheat Seed Dormancy

The inability to germinate even under favorable environmental conditions

Dormant

Non-Dormant

After-ripening Cold Stratification

Improve Wheat PHS Tolerance

Improve Wheat PHS Tolerance

Characterizing seed dormancy already present in germplasm in the PNW : Traditional Breeding

Improve Wheat PHS Tolerance

Characterizing seed dormancy already present in germplasm in the PNW : Traditional Breeding

Use an ABA sensitive mutant to increase seed dormancy: Mutation Breeding

Enhanced Response to ABA8, ERA8

EMS mutagenized in the soft white spring cultivar, Zak.

Schramm et al., 2013; T. Harris & S. Martinez, unpublished

Enhanced Response to ABA8, ERA8

EMS mutagenized in the soft white spring cultivar, Zak.

Schramm et al., 2013; T. Harris & S. Martinez, unpublished

Enhanced Response to ABA8, ERA8

Spike Wetting Tests

Field Grown Harvested at PM AR for 5 days Misted 6 sec / min

Scored every 24 hrs for 7 daysPHSPHSTolerantSusceptible

ERA8 shows increased PHS tolerance than WT

ERA8 shows increased PHS tolerance than WT

ERA8 shows increased PHS tolerance than WT

1. Does the ERA8 mutant lose sensitivity to ABA more slowly with dormancy breaking treatments? (cold stratification & after-ripening)

2. Does *ERA8* show any difference in response to GA rescue of seed germination?

Exogenously applied hormones over a cold stratification time course

ERA8 remains sensitive to ABA longer in the cold than WT but is able to break dormancy eventually.

- ERA8 is more sensitive to ABA than WT
- ERA8 initially is insensitive to GA (rescue of germination)

- ERA8 is more sensitive to ABA than WT
- ERA8 initially is insensitive to GA (rescue of germination)

- ERA8 is more sensitive to ABA than WT
- ERA8 initially is insensitive to GA (rescue of germination)

- ERA8 is more sensitive to ABA than WT
- ERA8 initially is insensitive to GA (rescue of germination)

1. Is the *ERA8* phenotype due to overaccumulation of ABA or a change in ABA signaling?

2. Is the ERA8 phenotype associated with changes in other hormones?

Hormone Content Measurements

PAG 2016 | S. MARTINEZ | PG. 13

(www.wheatbp.net); S. Martinez & K. Tuttle

PAG 2016 | S. MARTINEZ | PG. 14

S. Martinez & K. Tuttle

 In wheat, more dormant cultivars are more sensitive to IAA inhibition of germination (Ramaih et al.,2003)

- In wheat, more dormant cultivars are more sensitive to IAA inhibition of germination (Ramaih et al.,2003)
- Exogenously applied IAA inhibits germination (Morris et al., 1988)

Aleurone WT ERA8

- In wheat, more dormant cultivars are more sensitive to IAA inhibition of germination (Ramaih et al.,2003)
- Exogenously applied IAA inhibits germination (Morris et al., 1988)

Aleurone WT ERA8

- In wheat, more dormant cultivars are more sensitive to IAA inhibition of germination (Ramaih et al.,2003)
- Exogenously applied IAA inhibits germination (Morris et al., 1988)
- At 1 week of after-ripening, ERA8 has higher IAA levels than WT
- IAA levels decrease with afterripening in *ERA8*.

Weeks After-ripened

- Initially WT and *ERA8* are not different in the embryo
- ABA is decreasing with AR of **BOTH** *ERA8* and WT

- ABA levels in *ERA8* were actually lower in the aleurone than WT.
- ABA content in the aleurone does not parallel the embryo

Hormone Content vs Germination Profile

IF ERA8 is an ABA mutant, what could it be?

ERA8 is a <u>gain-of-function</u> semi-dominant mutant

3 possibilities

- ABA overaccumulation
- ABA transport
- ABA sensitive

• Increased ABA sensitivity in *ERA8* is associated with higher seed dormancy and PHS tolerance.

- Increased ABA sensitivity in *ERA8* is associated with higher seed dormancy and PHS tolerance.
- ERA8 is associated with elevated levels of IAA, an inhibitor of wheat germination.

Conclusions

- Increased ABA sensitivity in *ERA8* is associated with higher seed dormancy and PHS tolerance.
- ERA8 is associated with elevated levels of IAA, an inhibitor of wheat germination.
- In wheat, loss of seed dormancy is associated with decreasing ABA levels.

Conclusions

- Increased ABA sensitivity in *ERA8* is associated with higher seed dormancy and PHS tolerance.
- ERA8 is associated with elevated levels of IAA, an inhibitor of wheat germination.
- In wheat, loss of seed dormancy is associated with decreasing ABA levels.
- The *ERA8* mutation is not associated with a failure in ABA turnover with after-ripening.

Conclusions

- Increased ABA sensitivity in *ERA8* is associated with higher seed dormancy and PHS tolerance.
- ERA8 is associated with elevated levels of IAA, an inhibitor of wheat germination.
- In wheat, loss of seed dormancy is associated with decreasing ABA levels.
- The *ERA8* mutation is not associated with a failure in ABA turnover with after-ripening.
- The *ERA8* phenotype likely results from increased ABA signaling, such as a gain-of-function mutation in a positive regulator of ABA response.

Acknowledgments

<u>Cornell University:</u> Mark Sorrells

<u>RIKEN:</u> Mitsunori Seo Yumiko Takebayashi

Washington State University: Camille M Steber Kimberly Garland Campbell Keiko M Tuttle Tracy J Harris Lucia Strader Elizabeth Schramm Sven Nelson

Arron H Carter Scot H Hulbert Campbell & Steber Lab USDA Field Crew

References & Questions

Klingler, J. P., Batelli, G. & Zhu, J.-K. ABA receptors: the START of a new paradigm in phytohormone signalling. *J. Exp. Bot.* 61, 3199–3210 (2010).

McMaster, G. J. & **Derera**, N. F. Methodology and sample preparation when screening for sprouting damage in cereals. *Cereal Research Communications* 4, 251–254 (1976).

Morris, C. F., Paulsen, G. M., Mueller, D. D. & Faubion, J. M. Identification of L-Tryptophan as an endogenous inhibitor of embryo germination in white wheat. *Plant Physiology* 88, 435–440 (1988).

Schramm, E. C., Nelson, S. K., Kidwell, K. K. & Steber, C. M. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar 'Zak'. *Theor Appl Genet* 126, 791–803 (2013).

Ramaih, S., Guedira, M. & Paulsen, G. M. Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. *Functional Plant Biology* 30, 939–945 (2003).

Johnson, R.R., Wagner, R.L., Verhey, S.D., & Walker-Simmons, M.K. The Abscisic Acid-Responsive Kinase PKABA1 Interacts with a Seed-Specific Abscisic Acid Response Element-Binding Factor, TaABF, and Phosphorylates TaABF Peptide Sequences. *Plant Physiol. 130*, 837–846 (2002).