

The First Step to Tackling the FN Problem: Identifying PHS Tolerant Genes/QTL in PNW Germplasm

Shantel A. Martinez

FN Workshop | Jan 30th, 2019 PNW Quality Council

Affiliations

Current: Plant Breeding & Genetics, Cornell University

Previous: Crop & Soil Science, Washington State University

github.com/shantel-martinez/FNWorkshop2019

ASHINGTON

National Institute of Food and Agriculture

Authors

Jayfred Godoy USDA DES Meng Huang Zhiwu Zhang Arron H Carter **Kimberly Garland Campbell** Camille M Steber

Acknowledgments

Rehana Parveen **Tracy J Harris**

Preharvest Sprouting

Germination of mature seed on the mother plant when cool and wet conditions occur before harvest

Wheat Seed Dormancy

The inability to germinate even under favorable environmental conditions

After-ripening Cold Imbibition

PHS is a result of a-amylase activity breaking down starch chains

Canadian Grain Commission

PAGE 5 | github.com/shantel-martinez/FNWorkshop2019

Hagberg-Perten Falling Number: The Industry Standard to Measure PHS

Farms.com

Low FN is associated with low end use quality

You are Not Alone - 2018 Preharvest Sprouting

Follow

England

Tobias Barber @ekte Toby

I guess this is what you'd call pre-harvest sprouting #Harvest18

2:21 PM - 25 Aug 2018

Jim Thompson @jimt_farmer

Think rain has stopped play #wheatharvest18 @AllpressF @LumleySean @coostiebarrey @chrisbettinson2

Follow

9:53 AM - 27 Jul 2018

1 Retweet 8 Likes 🛛 🛞 💭 🐑 🛃 🐝

Kansas

Kyler Millershaski DShaski92

I'm always happy to have rain, but not the view I want during #WheatHarvest18 #kswx

3:36 PM - 22 Jun 2018

5 Retweets 37 Likes

On the edge. #wheatharvest18

New York

Shantel A. Martinez @s_amealia

A lot of hopes and dreams were crushed this week. Mon. I finished my harvest for PHS trials, then it rained for 2.5 days. Today we all went out to harvest the barley trials, SPROUTED. Went to harvest my mapping pop. for planting seed, SPROUTED. Welcome to NY summers?

3 40 60 60

5:37 PM - 26 Jul 2018

171 0 6 0 2

Nebraska

North Dakota (2017)

#wheatharvest18 started here at fermeschauvinfarms.com in StoneyPoint. Decent yields for no rain ... #OntAg #AgMoreThanEver #goodineverygrain

Canada

4:51 PM - 5 Jul 2018

3 Retweets 37 Likes 🛛 💮 👘 🎒 🎒 📲 🕿 🛶 🎡 🕯

Follow

This is why I screen for Phs

5:06 PM - 12 Jul 2018

Improving Preharvest Sprouting in the PNW: Understanding the Genetic Tolerance that Exists in the Current Breeding Programs

The panel is derived from at least six white winter wheat breeding programs.

Jernigan and Godoy et al., 2018 | Martinez et al., 2016

Falling Numbers Test: Samples are Harvested at "Harvest Maturity"

Greenhouse Spike Wetting Test: Samples are Harvested at Physiological Maturity

Misted 6 sec / min

Scored every 24 hrs for 7 days

Visible Sprout Scored

PHS Tolerant <

→ PHS Susceptible

Hypothesis

If sprouting is the main cause of low FN, then similar loci should be detected based on Falling Numbers and on the appearance on visible sprouting in spike wetting tests through association mapping.

The FN Trait Was Tested Over 5 Environments, 3 Different Events

Pul: Pullman

CF: Central Ferry

The environment has a large affect on the FN response

Visible Sprouting Was Tested Over 5 Environments, Same GH Rain Event

Visible Sprout Correlations Across Environments Were as Good as Other SWT Studies

	Day 6 Seedling Growth			
	CF14	Pul16	Pul14	CF15
Pul16	0.39**			
Pul14	0.39**	0.29**		
CF15	0.38**	0.30**	0.40**	
Pul15	0.34**	0.16*	0.46**	0.36**
**: p <u><</u> 0.001	* : p <u><</u> 0.0	5		

Kulwal et al., 2012; Jaiswal et al., 2012; Ogbonnaya et al., 2008; Zhou et al., 2017

The Correlations Between FN and Visible Sprout are Not Highly Negative

		Germination			Se	Seedling Growth		
		3 days	4 days	5 days	6 days	7 days	SI	
	Pul13	-0.16**	-0.24**	-0.17**	-0.18**	-0.20**	-0.21**	
Ē	CF14	-0.07	-0.09*	-0.06	-0.09	-0.10*	-0.10*	
×	Pul15	-0.07	-0.13*	-0.12*	-0.12*	-0.17**	-0.15**	
Ĩ	CF15	-0.09	-0.04	0.00	0.01	0.00	-0.01	
	CF16	-0.17**	-0.19**	-0.18**	-0.17**	-0.17**	-0.19**	

**: p < 0.001 * : p < 0.05

-0.80** -0.83** Rasul et al., 2009; Jiménez et al., 2016

When Implementing Spike-Wetting Tests in a Breeding Program: The Germplasm / Environment Could Affect the Variance

Number of Lines

Cornell University & Washington State University, unpublished

Genome-wide Association Study of FN and Visible Sprout

15,229 polymorphic markers | 21 chromosomes | 469 accessions

Will Only Looking at the Low FN Values Give Different QTN?

Genome-wide Association Study of FN and Visible Sprout

15,229 polymorphic markers | 21 chromosomes | 469 accessions

There were no *QFN.wsu* and *QPHS.wsu* that co-localized with one another

Visible Sprouting QTL QPHS.wsu Across Environments

PAGE 23 | github.com/shantel-martinez/FNWorkshop2019

Visible Sprouting QTL Located Near Known PHS Genes

Strongest PHS QTL, QPHS.wsu-2D, Close to the Compactum (C) Locus

2 of the 11 QFN.wsu appear to be unique

10 of the 34 QPHS.wsu appear to be unique

The others were found near other known PHS-related loci

Breeding for PHS Conclusion

GWAS for FN and visible sprout detected different QTN, although both co-localized with known PHS-related loci

FN is a measure of a-amylase activity. The lack of correlation between FN and visible sprout may mean that a-amylase is regulated differently with respect to the timing of germination in different varieties.

The club C locus was linked to the strongest QPHS.wsu-2D QTL

github.com/shantel-martinez/FNWorkshop2019

Panel Topic:

How do we make these markers/QTL useful in breeding programs

How do we turn this into a tool the breeders can use now