

Chasing Genes •• and Making an Impact Where it Matters

Shantel A. Martinez, PhD USDA-ARS Lincoln, NE 2019.11.20

ACKNOWLEDGMENTS

Cornell University

USDA ARS Wheat Health Unit Steber, Garland Campbell Groups Carter, Pumphrey Groups Uauy Lab

Cornell Small Grains Group Jannink & Sorrells Labs

PROJECT FUNDING

Education and Workforce Development (EWD)

Proposal #2017-07109

United States Department of Agriculture

National Institute of Food and Agriculture

Eastern Washington Raised

Eastern Washington Raised

Dr. Camille M. Steber

BS Bioegineering MS Crop Sci PhD Mol Plant Sci

Dr. Kimberly A. Garland Campbell

USDA NIFA EWD Fellowship

SERVICE & OUTREACH

Public Engagement @s_amealia

Recruiter, volunteer, mentor (6 years)

A snippet of stories from your friendly Indigenous scientist who shares all things food, wheat, walking, cat, data, and IPAs

📊 🕅 📿

■ POSTS 🕞 IGTV 🗌 SAVED 🖄 TAGGED

Mentoring women in science (3 years)

Louis Stokes Alliance for Minority Participation

Volunteer, mentor (5 years)

Mapping Population Release

Developed RIL population Louise x Alpowa for potential drought mapping studies

Preharvest Sprouting

Wheat has quite a bit of genetic variation

Unfortunately, rain events do occur during harvest

England

Twitter

I guess this is what you'd call pre-harvest sprouting #Harvest18

Diimt farmer Think rain has stopped play #wheatharvest18 @AllpressF @LumleySean @coostiebarrey

Kansas

I'm always happy to have rain, but not the view I want during #WheatHarvest18 #kswx

3:36 PM - 22 Jun 2018

Pacific Northwest

Nebraska

Follow

Chris Cu11an @ChrisCullan1

On the edge. #wheatharvest18

Fermes Chauvin Farms Ltd. @MoeChauvin

#wheatharvest18 started here at fermeschauvinfarms.com in StoneyPoint. Decent yields for no rain ... #OntAg #AgMoreThanEver #goodineverygrain

Follow

Farms.com

"...in 2016 when losses [*due to low FN*] were staggering, in the tens of millions of dollars." - Alex McGregor

"...September 2016, as the dismal FN results came in, **growers, scientists, agencies, state legislators and Rep**. Cathy McMorris Rogers (R-Wash.) met make sure the FN challenge didn't fall off the radar screen down the road as other issues came to the fore. It hasn't."

GWAS: PNW germplasm

frontiers in Plant Science ORIGINAL RESEARCH published: 14 February 2018 doi: 10.3389/fpls.2018.00141

> Check for spelates

Genome-Wide Association Mapping for Tolerance to Preharvest Sprouting and Low Falling Numbers in Wheat

Shantel A. Martinez^{1,2}, Jayfred Godoy², Meng Huang², Zhiwu Zhang^{1,2}, Arron H. Carter^{1,2}, Kimberly A. Garland Campbell^{1,2,34} and Camille M. Steber^{1,2,34}

¹ Melecular Plant Sciences, Washington State University, Paliman, WA, United States, ² Department of Crop and Sol Sciences, Washington State University, Puliman, WA, United States, ³ USDA-ARS Wheat Health, Genetics, and Qualty Research Univ, Washington State University, Puliman, WA, United States

Martinez et al., 2018b

19 / 34 *QPHS.wsu* loci and 4 / 9 *QFN.wsu* loci co-localized with (54) previously published studies

Martinez et al., 2018b

How does this study help?

6 MTA made into KASP markers for breeder selection

Identified germplasm that were high in FN quality and/or PHS tolerant versus germplasm that was too low in either

GWAS: Northeast germplasm

Martinez et al., unpublished

GWAS: Northeast germplasm

Zanetti et al., 2000; Munkvold et al. 2009; Fofana et al. 2009; Zhang et al. 2013; Kumar et al. 2015; IWGSC, 2018; Martinez et al. 2018; Zuo et al., 2019

Zak 8 Zak ERA8 7 Known Sprouting Score 6 Cultivars 5 4 3 2 1 Louise Brevor Otis Babe Macon Diva 2008 2010 2012 9

ERA8 Mutant Characterization

Euphytica DOI 10.1007/s10681-016-1763-6

The wheat ABA hypersensitive *ERA8* mutant is associated with increased preharvest sprouting tolerance and altered hormone accumulation

Martinez et al., 2016

Shantel A. Martinez · Keiko M. Tuttle · Yumiko Takebayashi · Mitsunori Seo · Kimberly Garland Campbell · Camille M. Steber ③

RIL Population Development

Genetic cultivar differences in addition to the ERA8 gene.

New Results

Comment on this pape

Exome sequencing of bulked segregants identified a novel TaMKK3-A allele linked to the wheat ERA8 ABA-hypersensitive germination phenotype

🔟 Shantel A. Martinez, 🔟 Oluwayesi Shorinola, Samantha Conselman, 🔟 Deven See, 🔟 Daniel Z. Skinner, Martinez et al., 2020 (accepted TAG)

Distobal Uauy, Distobal Camille M. Steber doi: https://doi.org/10.1101/784652

This article is a preprint and has not been certified by peer review [what does this mean?].

QTL Mapping

• A Genome • B Genome • D Genome • Unknown

Multiple ABA sensitive QTL (increased dormancy) were found throughout the genome, contributed by either Louise or *ERA8*

Agronomic Characterization

Although technically 'not significant', still concerned about a slight dip in yield

Table 3. Comparisons of agronomic and quality traits for soft white spring wheat Zak ERA8 and wild-type Zak from field experiments conducted at Pullman, WA.

Trait	Year	Zak ERA8		Zak		a such so t
		Mean	SE	Mean	SE	<i>p</i> value ⁺
Zadoks' stage	2012	46.2	0.66	45.8	0.66	0.68
Plant height, cm	2011	85.8	1.4	85.6	1.4	0.92
	2012	67.2	1.4	71.4	1.4	0.048
Yield, kg ha ⁻¹	2011	3988	263	4725	263	0.065
	2012	2952	263	3545	263	0.13
Test weight, kg m ⁻³	2011	789	6.4	770	6.4	0.048
	2012	756	6.4	753	6.4	0.75
Grain protein concentrations, %	2011	9.79	0.58	9.54	0.58	0.77
	2012	14.19	0.26	13.05	0.26	0.014
Hardness, %	2011	13.30	3.12	5.10	3.12	0.10
	2012	18.18	1.40	18.70	1.40	0.80
1000 kernel weight, g	2011	44.6	2.0	45.5	2.0	0.75
	2012	27.6	0.9	27.3	0.9	0.83

Martinez et al., 2014

Registration of Zak ERA8 Soft White Spring Wheat Germplasm with Enhanced Response to ABA and Increased Seed Dormancy

Shantel A. Martinez, Elizabeth C. Schramm, Tracy J. Harris, Kimberlee K. Kidwell, Kimberly Garland-Campbell, and Camille M. Steber*

BC Population Development

To clean up background EMS mutations not related to our trait of interest

```
Zak ERA8 × Zak WT
  Zak ERA8 BC1 × Zak WT
Zak WT × Zak ERA8 BC2
(WT/WT)
            (ERA8/ERA8)
  Zak/Zak ERA8 BC3
              299 300
 2
              123
 Greenhouse
              ABA
```


Bulked-Segregant Analysis

using exome-capture DNA sequencing

Linked locus on chromosome 4A

Fine Mapping in ERA8

Additional Zak/ZakERA8 BC

Louise/ZakERA8 RIL

Otis/ZakERA8 F2:F3

Chromosome 4A Region (cM)

Fine Mapping in ERA8

Trait Introgression of ERA8

JOURNAL OF PLANT REGISTRATIONS

GERMPLASM

Martinez et al., 2014

WSU Winter Wheat	USDA Club Wheat	WSU Spring Wheat	RAGT Seed, UK	
5 crosses female/ (BC ₁ ERA8/male) (~200) 20 crosses (BC ₁ ERA8/male) / male (~200)	24 crosses Jasper / BC ₃ ERA8 (~800) Bruehl / BC ₃ ERA8 (~800) Kaseberg / BC ₃ ERA8 Brevor / BC ₃ ERA8 X010263-3C / BC ₃ ERA8	3 crosses Otis / BC ₂ ERA8 (529) Louise / ERA8 x5 (698) x12 (286) BC ₁ ERA8 / Diva	In collaboration with JIC	
	ARS010719-4L / BC ₃ ERA8	f	Genome-specific KASP primers	
		Allele 1	FAM-CCTCTGCTATTTGCTTTAATCTCtc	
		Allele 2	HEX-CCTCTGCTATTTGCTTTAATCTCTt	
		Commo	n GGACTTGGCAGCATATGTCA	

Martinez et al., 2020

Fine Mapping QPhs.cnl-2B.1

Martinez et al., unpublished

Fine Mapping QPhs.cnl-2B.1

Trait Introgression QPhs.cnl-2B.1

NY winter

Japanese Germplasm

158 lines elite nursery past 10 years 'Tamaizumi'

Can we integrate genomic prediction in the breeding program to make more accurate decisions?

Genomic Prediction

0.0 Inaccurate

Genomic Prediction

Both $y_{obs_both} \sim Loc + Yr + HarvDate + KColor + (1|variety)$

Red $y_{obs} \sim Loc + Yr + HarvDate + (1|variety)$

White $y_{obs} \sim Loc + Yr + HarvDate + (1|variety)$

A comparison of Ridge Regression and Gaussian kernel models across seed coat colors

What does an accuracy of 0.6 even mean?

Accuracy of an phenotypic estimate (without genetic data)

```
PA = cor(Obs_EnvA, Obs_EnvB)
```

cor(Obs2008, Obs2009)

cor(Obs2015, Obs2017)

PA

pheno

The correlation (PA) from one environment to another environment is comparable, to genomic prediction accuracies.

rrBLUP

White kernel GWAS found multiple significant loci

Zanetti et al., 2000; Munkvold et al. 2009; Fofana et al. 2009; Zhang et al. 2013; Kumar et al. 2015; Martinez et al. 2018; Zuo et al., 2019

Will associated QTL improve prediction?

Observed phenotype mixed model

y ~ Loc+Yr+HarvD+(1|variety)

Five-fold CV

 $PA = cor (y_{obs_test}, GEBVs_{test})$

Adding significant QTL as fixed effects seems to improve accuracy for Gaussian kernel model

GAUSSadditive + non-additiveRRonly additive

GAUSS vs RR

The real question is, what do you want to use it for?

Want additive RR for selection Want +non-add for prediction

Need to investigate if adding significant QTL markers as a fixed effect is overfitting the model?

How many years between phenotyping can a breeding program skip without losing substantial PA?

How many years between phenotyping can a breeding program skip without losing substantial PA?

It may be possible to phenotype for PHS tolerance every couple of years, without effecting accuracy

Something to consider:

Increased genetic diversity year to year will reduce ability to accurately calculated GEBVs
Year to year GEBV calculations tend to have lower PA than GEBV calculated from hundreds of individuals over multiple environments

> Ridge Regression White KC only

Why use genomic prediction for this trait?

Phenotyping occurs at the end of the growth cycle

No "mid-cycle" selections before harvest

These phenotypic hurdles are not exclusive to PHS screening

Very labor intensive

Precise sampling

Disease Screening

Traits dependent on inoculation, severity, etc can benefit from genotypic predictions of the phenotype

FHB (2 field seasons)

Breeding with Genomic Prediction

As your next generation plant breeder:

I aim to fuse wheat breeding with predictive analytics

Thank you for your attention

1.5 days rain 2018

2019

weatherspark.com

weatherspark.com

